CHAPTER 3

IMPEDANCE MATCHING



DEFINITION OF MATCHING (1/2)

The active power provided by a source represented by its
Thevenin equivalent, of internal impedance Z¢=R¢+jX; witha
load impedance Z; =R; +jX; is given by:
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Fig 3-1:  Source connected to a load.

For a given source impedance, the power dissipated in R; is max-
imum when:

oP
(3.2)
%=O:R§—Ri+(XS+XL)2=O:RL = R
and thus when: Z, = Zg* (3.3)

The power transfer from a source to a load is therefore maxi-
mum when the load impedance is equal fo the complex conjugate
of the source impedance. This situation corresponds to martch-

ing.
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DEFINITION OF MATCHING (2/2)

When the load impedance is matched to the source impedance,
the load reactance has the opposite sign from the source reac-
tance, and thus they mutually compensate each other. The
resulting circuit corresponds to a series connection of the
source and load resistances, which are equal, permitting a maxi-
mum transfer of power from the source fo the load. If the
source reactance is that of an inductance, the load reactance
should be that of a capacitance, and vice versa. This matching is
only valid at the resonance frequency of the inductance and
capacitance in series.
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Fig 3-2:  Matching the load.

Impedance matching is thus only strictly realized at a single fre-
quency, which is the resonant frequency of the series resonant
circuit. The matching worsens as the frequency gets farther
from the resonant frequency, which can cause problems for cir-
cuits with a large passband. There are methods for increasing
the band of frequencies for which there is matching and there-
fore maximum power transfer. These methods generally use cir-
cuits with a low quality factor.

©C.C.ENZ Impedance matching 22.9.10



PRINCIPLE OF IMPEDANCE MATCHING

Impedance matching consists of synthesizing a non-dissipating
circuit (thus containing only inductors and capacitors) inserted
between the source and the load, such that the impedance as
seen from the source is equal to the complex conjugate of the
source impedance. Of course there are an infinite number of cir-
cuits, more or less complex, that satisfy this criterion.

Zs
[ 1 nqn-dissipating
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I | circuit
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Fig 3-3:  Principle of impedance matching.

All of the following methods are based on the equivalence
between the series and parallel circuits illustrated in Fig. 3-4.
The unloaded Q is the quality factor of the impedance-matched
circuit associated either with the source or the load resistance.
The loaded Q is the quality factor of the complete circuit (with
the source and load). Since Ry = R;, the loaded quality factor
is equal to half of the unloaded quality factor.
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Fig 3-4:  Series / parallel equivalence.
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3-5
L NETWORKS (1/4)

When the source and load impedances are purely resistive and
R; >Ry, it is necessary to lower the impedance seen from the
source by placing a reactance (inductor or capacitor) in parallel
with the load. One must then compensate the reactance of the
shunt element just added by placing a reactance with the oppo-
site sign in series. In the case shown in Fig. 3-5 there is a capac-
itor C in parallel with the load R; .

Ry

= |==-1
¢ Rin
L L, G
o111 —]> N H
—LC ¢RL3OOOQ ¢RS =R,
O o,
— —
circuit parallele series equivalent circuit
R, =50 Q @ 1 MHz R, =50 Q @ 1 MHz

Fig 3-5:  Example of an L circuit, impedance step-down.

This parallel circuit can be transformed to an equivalent series
circuit in which the series resistance will be equal to the source
resistance, in this case 50 Q. The two have the same quality fac-
tor:

R

L B /RL 000 |
1+Q2:>Q— —R-;—l— /—56——1—7.7 (3.4)

from which we calculate the reactance of the inductor and the
capacitor:

R =

Xo, = OR, = OR, = 7.7x50 = 3840
R;/Q = 3000/7.7 = 391Q

XL
Xc
L= X,/Q2nf) = 384/(2n x 10°) = 69uH

and thus: ;
C = 1/2nfX;) = 1/(2nx 10° x 391) = 407.5pF
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L NETWORKS (2/4)

The amplitude of the impedance of the circuit in Fig. 3-5 is rep-
resented in Fig. 3-6. We note that the reactance of Z;, cancels
out at the resonant frequency for which the input impedance is
equal to 50 Q. Notice that the circuit in Fig. 3-5 performs low-
pass filtering. In certain cases, a high-pass characteristic is
preferable, and is obtained by simply switching the capacitor and
the inductor.

600 1
500 1
w00}
300
200

100

| Z,, | R,, X,,iohms)

5001
Fig 3-6:  Input impedance of the circuit in Fig. 3-5.

Since the two reactances must be of opposite signs, one of the
components will be an inductor and the other a capacitor. There
are therefore only fwo L networks which lower the impedance as
seen from the source. They are shown in Fig. 3-7.

Zs | L | Zs | C |
—f T i | H [ |
| I | - |
Vsl | = C, ¢ZL Vsl | 4L E‘:IZL
| | T | |_ |
a) Low-pass filter. b) High-pass filter.

Fig 3-7: L networks, impedance step-down (R; > R ).
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3-7
L NETWORKS (3/4)

When the source and load impedances are purely resistive and
R; <Ry, it is necessary to increase the impedance seen from
the source by placing a reactance (inductor or capacitor) in
series with the load. One must then compensate the reactance
of the series element just added by placing a reactance of oppo-
site sign in parallel. In the case shown in Fig. 3-8, an inductor L
has been placed in series with the load R; .

0= |21
RL

_’ _}

Tt T e
C =— Ij]RL—SOQ C =— %Lp ¢RP=RZH

o, O -

— —>

series circuit equivalent parallel circuit

R;,=3000Q @ 1 MHz R;,=3000Q @ 1 MHz

Fig 3-8:  Example of L network, impedance step-up.
The series circuit can be fransformed to its parallel equivalent
according to:

2 Rp Rin
R,=R,(1+0)=0 = |z5-1= |-—-1=77 (3.5)

L

One can thus calculate the reactance of the inductor and the
capacitor:
Xe=X;,=R/0 =R, /0 =3000/77 = 391Q

X, = OR; = 7.7x50 = 384Q
and the values of the components for the desired frequency:
C = 1/Q2nfX,) = 1/(2nx 10°x 391) = 407.5pF

L =X,/Q2nf) = 384/(2n x 10°) = 61.1uH
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L NETWORKS (4/4)

The amplitude of the impedance of the circuit in Fig. 3-8 is rep-
resented in Fig. 3-6. We note once again that the reactance of
Z;, cancels out at the resonant frequency for which the input
impedance is equal to 3000 Q. The circuit in Fig. 3-8 performs
low-pass filtering, which can be changed to high-pass filtering by
simply switching the inductor and the capacitor.

3000 1

R, =508
f=k X 1 MHz

2000

1000

| Z,, | Rin X;,{ohms)

—-1000 t

—2000

_3000 L
Fig 3-9:  Input impedance for the circuit in Fig. 3-8.
There are two L networks which allow us to increase the imped-
ance as seen from the source. They are shown in Fig. 3-10.

Zs | L Zs | ¢
| i i i L 1| i
| | | |
Vgi =T C | IjZL Vgl 3L | IjZL
| | | i |
_l_ Lo J _L_ Lo J
a) Low-pass filter. b) High-pass filter.

Fig 3-10: L networks, impedance step-up (R; <Rg).
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3-9
COMPLEX SOURCE AND LOAD IMPEDANCES (1/4)

In the preceding examples, we supposed that the source and load
impedances were real. In reality, they are rarely real. For exam-
ple, the input and output impedances of a bipolar transistor are
always complex. There are two methods for handling the reac-
tances of the source and load:

a)absorption: the reactances of the source and load can be
taken into account in the impedance matching network by
placing the components such that the functional capacitors
of the network are in parallel with the parasitic capaci-
tances and the functional inductors in series with the para-
sitic inductances.
b)resonance: cancel out the effect of the reactances of the
source and load by placing a reactance of the opposite sign
in parallel or in series.
Note that absorption is only possible when the value of the para-
sitic element is smaller than that of the functional element from
which it must be subtracted. These two techniques can naturally
be combined.
By way of example we synthesize an impedance matching net-
work using the absorption method for the circuit in Fig. 3-11.

100 Q 17126 =100 MHz
[ —™ impedance
Vs l() matching —=2pF ﬁ] 1000 ©
network
L

Fig 3-11:  Complex source and load impedances.

At first we ignore the source and load reactances. The load
resistance being larger than the source resistance, we choose
the L network of Fig. 3-7 a).
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3-10
COMPLEX SOURCE AND LOAD IMPEDANCES (2/4)
The quality factor is given by:

0= /R /Rg—1=73

from which we get:

_ _ _ Xy 300
X, = ORg=3x100=3000=L = =~ = - = 47TnH
o 2rx 10
R R
sz—pz—Lzlgﬂzwmzczle: 18 — 4.8pF
0 0 nfp 2t x 10 x 333

We thus obtain the diagram shown in Fig. 3-12 a). By then sub-
tracting the value of the 477nH series source inductance and
the value of the 4.8 pF parallel load capacitance, we obtain the
diagram in Fig. 3-12 b).

100 477 nH
- m
Vsl D —— 4.8 pF E‘] 1000 Q
L
a)
100Q 200nH | 277nH |
E M | MY I
| |
Vsl() ’_y | 2.8 pF == | —— 2pF ﬁ‘]moo O

_l_ | |

Z, =100—/126 Q @ 100 MHz

b)
Fig 3-12: lllustration of the absorption method.

©C.C.ENZ Impedance matching 22.9.10



3-11
COMPLEX SOURCE AND LOAD IMPEDANCES (3/4)

Another example, illustrating the load resonance technique, is
given in Fig. 3-13 a). We want to synthesize a high-pass imped-
ance-matching circuit. The fact that the load resistance is
larger than the source resistance means that we must use the
circuit shown in Fig. 3-7 b). But before calculating the elements
of the L network, we must rid ourselves of the load capacitance
by connecting a parallel inductor whose value is calculated
according to:
1 1

Q2mN2C, (27 x 75x10°)% x 40x10

We therefore get the circuit of Fig. 3-13 b) from which we can
calculate the elements of the L network:

R

KL 600

= |=-1= |>=-1=332
© R 50

X, = OR¢ = 332x50 = 166Q0= C=

= 112.6nH

12

L ! = 12.78pF

21X nrx 75%10° x 166
R R X
X =2 - _L_680 ooy 181 ey
P Q0 Q0 332 21f 5 x 75%10°

We thus obtain the circuit in Fig. 3-13 ¢) which can be simplified
further by calculating the equivalent inductance for the two par-
allel inductances connected to the load. Finally, we obtain the
circuit in Fig. 3-13 d).
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3-12
COMPLEX SOURCE AND LOAD IMPEDANCES (4/4)

08— f=175 MHz
L 1 impedance
Vg l() matching —— 40 pF ¢ 600 Q
network
L
a) Circuit with complex load.
50 Q
[ 1 impedance '
Vg l() matching ’_> % 112.6 nH=—= 40 pF ¢ 600 Q
network |

’ |

Z=600 Q @ 75 MHz

b) Addition of an inductor to compensate the load capacitance by resonance.

50Q | 12.78 pF |
——| —
| I

Vs l() | 384nH3 | 112.6 nH= 40 pF 600 Q
| [
L | S

1 | |
L1 ' '
| ! |
Vs C) | 87 nH | = 40 pF 600 Q
| |
L | S

d) Final circuit.
Fig 3-13: Illustration of the resonance technique.
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3-13
THREE-ELEMENT MATCHING NETWORKS

The disavantage of L networks comes from the fact that when
the source and load resistances are specified, the quality factor
and therefore the selectivity of the impedance-matching net-
work are likewise specified (cf Eqn. 3.4 and 3.5). There are then
not enough degrees of freedom fo choose the quality factor
independently, which can be irritating for certain applications in
which we want selectivity. To compensate for this problem, it is
possible to add an element and thus a degree of freedom permit-
ting us to set the quality factor. This Q will necessarily be larger
than the quality factor corresponding tfo an L network. The L
network is thus the impedance-matching network having the min-
imum quality factor.

There are two types of three-element matching networks
(cf Fig. 3-14):

DIT networks;
2)T networks;

L
a) Il networtk.
Rg
1 X X3

.||_.

b) T network.
Fig 3-14: 3-element matching networks.
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3-14
IT NETWORKS

One can describe the IT network as the connection of fwo L net-
works with a virtual resistance as shown in the diagram in Fig. 3-
15. This virtual resistance is just used fo dimension the elements
of the L networks. The reactances X;; and X,; as well as X, and
X),» must be of different types (if for' exampi X, corresponds
t6a capacitance, X,,; must correspond to an mduc‘rance)

virtual resistance

—> —>
Ry \
1 X1 \ X5

Vs l D X, Ryt [ ] Xp2 1%

inl RS N Rvirt(l + Ql) RinZ Rvirt 1+_Q§

Fig 3-15: 11 network represented as two L networks.

The virtual resistance R,,,; represents the resistance seen from
the center point R,,, = R, = R,/(1+03) with 0, = R,/X , , from
which we get 0, = R, /R,;,,—1. In addition, the resistance seen
from the source must be equal to Ry, imposing
R, =Rg=R, (1+0) with 0, =x,/R. and therefore
0, = JR¢/R,;.,—1. We remark that for the quality factors O; and
0, to exist, the virtual resistance must be less than Rg or R; .
The quality factor of the I1 network is associated to that of the
L network section having the larger quality factor, and the sec-
tion having the larger quality factor is on the side with the
higher terminating impedance. This gives us the definition of the

quality factor of a Il network:

R
O R’”‘” ~1 (3.6)

virt

where R, ,. represents the larger of the resistances Rgor R;.
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3-15
IT NETWORK EXAMPLE (1/2)

As an example, we will match a load resistance of 50 Q to a
source resistance of 3000 Q by using a II network, conserving a
quality factor of 10 (cf Fig. 3-16).

Rg¢=13000 Q
Q=10 3 X,
Vsl() X, X; D R, =500Q
T

Fig 3-16: Example of designing a 11 network.

The frequency is equal to 1 MHz. R, is calculated from Egn. 3.6
with R, . = Rg¢=3000 Q:

R, ux _ 3000
1+o? 100

The reactances of the first section are thus given by:

Xp1 = R¢/Q = 3000/10 = 300Q2

X, = OR,.. = 10x29.7 = 297.03Q

The quality factor of the second L network section is then set
by the resistances R,;,; and R;:

R
L 50
0, = —1 = |==——1 = 0.8266
2 R, 29.703

The resistance R; must now be matched fo the virtual resist-
ance. Since it appears in a parallel branch, we have:
X, = O,R . = 0.8266x29.7 = 24.55Q
X

2 = R /0, = 50/0.8266 = 60.490

As a result of choosing inductors for the series branches, the
shunt branches will therefore be capacitors:
1
C, = —
1 2anpl

1
C =
2
2anp2

R =

virt

= 29.703Q

= 530.5pF L, = X,,/(2nf) = 47.27TuH

= 2631pF L, = X,/(2nf) = 3.9uH
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3-16
IT NETWORK EXAMPLE (2/2)

We finally obtain the circuit shown in Fig. 3-17 a), for which the
magnhitude of the input impedance is shown as a function of the
frequency in Fig. 3-17 b). We notice that the imposed quality
factor corresponds well to the bandwidth at -3 dB and that The
form factor is larger than that of Fig. 3-6, because this is a 3™

order filter.

3000 Q 47.27 +3.9=51.18 uH

I m
Vs l() —L 530.5pF == 2631 pF E‘] 50 Q
T

a) Final circuit.

/i
B ="0 _ WMHz _ \00rm
0~ 10
A
Rs / \
2000 R, =509
/\/i f=kX1MHz
P o
><E
EE
SE
0 0.5 0.6 0.7 08 0.9 1.0 1.1 1.2 1.3 14 ﬁ‘k
Xin
-1000

b) Input impedance of the circuit in Fig. 3-17 a).
Fig 3-17: Example of the design of a 11 networtk.
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3-17
T NETWORKS

The T network can be described as two back-to-back L networks
of which the shunt branches are in parallel, as shown in Fig. 3-18.
The difference with respect to the 11 network is that in the T
network, the virtual resistance is larger than both the source
and load resistances. The T network is often used for matching
small impedances with a high quality factor.

» virtual resistance
:S Xsl \& XSZ
5| %] [ &
L

Fig 3-18: The T network represented as two L networks.

The quality factor of the T network is determined by the L net-
work section with the higher quality factor. By definition, the
section with the higher quality factor is at the side with the
smaller terminating resistor. Q is determined by the formula:

QTE Rvirt 1 (3.7)

where R, is the smaller terminating resistor.
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3-18
T NETWORK EXAMPLE

As an example, we would like to design a T network to match a
source resistance of 10 Q to a load resistance of 50 Q with a
quality factor of 10. We would like to use a minimum number of
inductors, and we want the resulting filter to be of type pass-
band.

The virtual resistance is calculated from Eqgn. 3.7:

R, =R (0" +1)=Ry(Q +1) = 10x 101 = 10100

The section with the higher quality factor is on the source side.
The reactances of the corresponding L network section are:

X, = ORg=10x10 = 100Q X, =R /0 =1010/10 = 101Q

The quality factor of the L network section on the load side is
determined by the resistances R ;,; and R;:

0, = JR,;,/R, —1 = J1010/50—1 = 4.4

X5 = Ry /0y = 1010/44 = 2300 X, = O,R; = 44 x50 = 2200

One possible design in which there is only one inductor and the
filtering characteristic is of type passband is shown in Fig. 3-19.

10 Q 100 Q 220 Q
—n {
Vsl() 101 Q =— %231 0 E‘]sog
T |
a)

10Q 1000 2200

— Yy |

V{() ol d] 500

L

b)
Fig 3-19: Example of T network.
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3-19
WIDEBAND IMPEDANCE MATCHING (1/2)

Up until now we have seen L networks for which the quality fac-
tor was determined by the source and load resistances, and I1
and T networks which allow us to choose a quality factor inde-
pendently of the source and load, as long as it is higher than that
of the L network. These circuits are thus appropriate for nar-
row-band impedance matching. To match impedances over a
wider band (or fo have a quality factor smaller than that of the
simple L network), we can use two cascaded L networks like
those presented in Fig. 3-20. In these configurations, the value
of the virtual resistance must be between those of the termina-
tion resistances, with the result that the quality factor goes
from that of an L network to that of a IT or T network.

virtual resistance

R
— 1\ X,

s ] e e
il

a) It can be proved that R; must be smaller than R to use this configuration.

virtual resistance

% ‘XSI \& Xs2
% ] e ] [
L

b) It can be proved that R; must be larger than R to use this configuration.

Fig 3-20: Low quality factor (wideband) matching network.
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3-20
WIDEBAND IMPEDANCE MATCHING (2/2)

The minimum quality factor and therefore the maximum band-
width are obtained when:

R = JRsR; (3.8)

The quality factor is thus defined by:

/R , /R
QE virt 1 = max 1 (3.9)
Rmin Rvirt

where R, is the virtual resistance and R,,;, and R, . are,
respectively, the smaller and larger terminating resistances.
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MATCHING WITH AN AUTOTRANSFORMER

The impedance matching of two circuits can also be carried out
by using an inductor with a central lead (or autotransformer) or
a capacitive divider. These matching networks are useful when
one wants to create, for example, a parallel resonant circuit with
a high quality factor, loaded with a small impedance.

M+L,

L=L1+L2+2M k=

I I

o O
L;eN
v, [ C —— ! 1 4 J — ) %L I:I anL
o O

L L
n=%Fk |—= |—

a) Autotransformer. b) Equivalent circuit.

Fig 3-21: Impedance matching by autotransformer.
The equivalent resistance in parallel with the LC circuit is equal

: s 2
to the load resistance R; multiplied by a factor n™:

R'L =n -R;

112

L
—.R (3.10)
L, L
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IMPEDANCE MATCHING WITH A CAPACITIVE DIVIDER

It is also possible to do impedance matching with a capacitive
divider, as shown in Fig. 3-22.

Cl C2
: C =
admittance Y C,+C,
e} O
e C]
Vil L3 Vi 3L ==c []r’r,
e} O
___________________ B ¢, +G, B C,
n = = 1+=
C, ¢,
a) Capacitive divider. b) Equivalent circuit.

Fig 3-22: [Impedance matching with a capacitive divider.
The admittance Y appearing in parallel with the inductance L in
the diagram in Fig. 3-22 a) has the value:

¥(s) = sC, - A B +j-X (3.11)
P 1+sR,(C+Cy) p p

For frequencies ©>>(R,C,)"'>[R,(C,+C,)]! , this
admittance can be broken up into a parallel conductance

1 (O’Cl)zRL 1
G =— = =~ (3.12)
PRy 1+(0R,(C,+C))? R,[1+C,/C,1?

and a capacitance C equal to the series connection of C; and C».
The resistance seen at the terminals of the circuit at the reso-
nant frequency of the parallel LC is thus equal to the load resist-
ance multiplied by a factor n:

C~2
R, =n-R, = [1 +Fz} ‘R, (3.13)
1
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SMITH CHARTS

The Smith Chart is probably one of the most useful graphical
tools for the conception of HF circuits, and specifically for the
synthesis of impedance matching networks. I+ was invented in
the 1930's by an engineer at Bell Labs named Phillip Smith. The
Smith Chart is a bilinear transformation of the plane of normal-
ized impedances z to the plane of the reflection coefficient I'™:

a1 Z/Zy-1 Z-Z,
z+1  Z/Zy+1  Z+Z,

r = (3.14)

where Z, is the normalization impedance, usually 50 Q. The
Smith Chart lets us find the impedance z when we know the
reflection coefficient I" or vice versa.

Im Im
A A :
_ - I =p+
. z =r+jx . PTJq
p Re p Re
r p
z plane I" plane

Fig 3-23: Transformation of the z plane to the 1" plane.
By setting z = r+jx and I' = p+jq, and knowing r and x, p
and g must be determined from the following relationship:

(r—1)+jx
(r+1)+)x

I'=p+jg = (3.15)
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3-24
SMITH CHART CONSTRUCTION (1/2)
Constant resistance circles

By setting the real and imaginary parts of Egn. 3.15 to be equal,
we find the equations which describe the curves of constant r:

e B
r+1 r+1
as well as those of constant x:
(p—1)2+(q—1)2 = (1)2 (3.17)
X X

The curves for r = const defined by Egn. 3.16 are circles with
radius 1/(r+ 1) of which the center is located on the real axis
at the point r/(r + 1) . The two intersections with the real axis
are locatedat (r—1)/(r+ 1) and . For r varying from O to 10,
we obtain the network of circles shown in Fig. 3-24. Each point
oh one of these circles has the same (normalized) resistance.

circles with r=const

Im  y=const.

A

z plane T plane

Fig 3-24: Constant resistance circles
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SMITH CHART CONSTRUCTION (2/2)
Constant reactance circles

The curves with x = const defined by Eqn. 3.17 are also cir-
cles, with radius 1/x of which the center is located at coordi-
nates (1, 1/x) . For x varying from 0.1 to 10, we get the network
of circles shown in Fig. 3-25. Each point of one of these circles
has the same (normalized) reactance.

circles with x=const

Im \“A“cfwe Reacanes Com"onent
A
X .
o
- Re 0 = ‘
e

= o
itive Reactance Con®®

z plane I plane

Fig 3-25: Constant reactance circles.
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IMPEDANCE CHARTS

The superposition of constant resistance and constant reactance
circles gives the complete Smith Chart of impedances, as shown
in Fig. 3-26. The exterior circle corresponds to zero resistance
or a purely imaginary impedance. The upper part corresponds to
a positive reactance and thus to an inductance, while the lower
part corresponds to a negative reactance and thus to a capaci-
tance. The horizontal diameter corresponds fo zero reactance
and thus to a purely resistive impedance.

T3 \° 1 T3 pure inductance
“fa‘\.)"%\ °
8 c°,,v° 7 N
3 0.8 K
6 9"' S
oF
S
K pure
2 > resistance
% A i ;
& : X .
Lf \
& ' 3
‘:’ )
5
N e 0
P i
5/ 'S
I 0
§ ‘
! ' 5 " - ;
- - i : ]
% e d T SH o HIREBERE R o TE oo R 1 T1 2 J S
' I ResisTaNCE ComPONENT(-EL), OR CONDUCTANCE COMP uz () [ I v
: = oy | . T \ -
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Fig 3-26: Impedance chart.
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3-27
ADDITION OF A SERIES CAPACITOR

Fig. 3-27 represents the effect of the series addition of a nor-
malized negative reactance —j1.0 (corresponding to a capaci-
tance) with a normalized impedance z = 0.5+;0.7. The
resulting impedance is thus given by
z =0.5+0.7-j1.0 = 0.5—/0.3. The series addition of this
capacitor corresponds graphically to moving around the constant
resistance circle r = 0.5 counter-clockwise.
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Fig 3-27: Addition of a series capacitor.
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3-28
ADDITION OF A SERIES INDUCTOR

Fig. 3-28 represents the effect of the series addition of a posi-
tive reactance j1.8 (corresponding to an inductance) with a nor-
malized impedance z = 0.8 —j1.0. The resulting impedance is
equal to z = 0.8 —j1.0+,1.8 = 0.8 +,0.8. The series addition
of this inductor corresponds graphically fo moving around the
constant resistance circle 0.8 clockwise.
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Fig 3-28: Addition of a series inductor.
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3-29
CONVERTING IMPEDANCE TO ADMITTANCE

The Smith Chart can be used to convert an impedance z to an
admittance y = 1/z = g+jb. Let's look at z = 1+j, for
example. The corresponding admittance is
y = 1/z = 0.5—/0.5. The two corresponding points are shown
in Fig. 3-29. Note that they are the same distance d from the
origin, but in opposite directions. On the Smith Chart, one easily
finds the admittance corresponding to an impedance by moving

the distance between z and the origin, but in the opposite direc-
Tion.
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Fig 3-29: Conversion of impedance to admittance.
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3-30
COMBINED IMPEDANCE AND ADMITTANCE CHART

By rotating the impedance chart by 180°, we obtain the admit-
tance chart. Fig. 3-30 shows the superposition of these two
charts. One single point now simultaneously corresponds to an
impedance and its admittance, of which the values can be read
from the respective charts. Notice that because the admittance
chart is found by the 180° rotation of the impedance chart, the
upper half corresponds to negative susceptances (inductances)
and the lower half to positive susceptances (capacitances).

Fig 3-30:  The complete Smith chart.
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3-31
ADDITION OF A SHUNT CAPACITOR

Fig. 3-31 shows the effect of the series addition of a positive
susceptance +j0.8 (capacitance) to an admittance of
y = 0.2—-0.5, resulting in an admittance y = 0.2 +;0.3. From
a graphical point of view, the parallel addition of a capacitor cor-
responds to moving around a constant conductance circle clock-

wise.
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ADDITION OF A SHUNT INDUCTOR

Fig. 3-32 shows the effect of the parallel addition of a negative
susceptance —j1.5 (inductance) to an admittance y = 0.7 +;0.8.
The resulting admittance is y = 0.7—j. This operation corre-
sponds graphically to moving around a constant conductance cir-

cle counter-clockwise.

&
5%
o
£:
2
o X e
o
3 ©
oS,
)
q
-
/o
ok /L
>
)
Q
~
oY
o
©
~
S
~
ol [n/&
147
&d o w
/8 B -
e
£3 0 5 EAR 3
0N Y - 3ly
ofc | % = : °}1°
39 cle
3"_-: - . . go
oti
<fe \ °©
N
,,,,ug L7g} H °
alg 8 8 2 (%) T™5rERE 5 omvs onaRios 56 () inan0aw0D 3oNvisisTE T T 1
» IS = = = 3 -+
© B g 3 © —. 1 ©
318 o g offol ] & olJel o 5 A : e S+
2 1
Ei ) J
eldte 2
«telcdis 4
e itle H
s1e\EtE ol
pe Y
w‘a & 3 ‘.g
31y He: Ny H
~ 120 d
e\ % SHE
P} & 26
A - 5
o e, k4 g
o\ : F 15
o\% S o 73 A= (4 2
o XS » 3
) a % 54
ST A&
~ 38

e G
.
X0 \7
© .
T &
X 5
&, NS
eXO P o
° % bﬁ Y, SR
\0‘ 0‘ )
> ’t'o AY XY <,
0
[ s't - < o
A >
NG 2 X / S
D
Q 70
o,b" > <0% @ ¢
N, N A S
o3 | k * - p ot l0
€. > .
° X = oo
H -4
s d 4 & °
J % - o o <)
° 5 ) s o
) og % 00 r «©
§i'g )
> €0 %0 S [
o "wo
o 210

Fig 3-32: Addition of a shunt inductor.
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SUMMARY OF SMITH CHART MANIPULATION

Fig. 3-32 presents a summary of the effect of the addition of
components on a Smith Chart.

series L

Fig 3-33:  Summary of the manipulation of components on the
Smith Chart.
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EXAMPLE 1 (1/2)

Design a two-element circuit to impedance-match a source
impedance Zg = 2515 to a load impedance Z; = 100 —;25
for a frequency of 60 MHz. The transfer function should be of
type low-pass.

The impedance that must be seen by the source is its complex
conjugate, Z* = 25+;15. Thus, we must transform the load
impedance to an impedance Zg*. We choose to normalize the
impedance to R, = 50Q2, so: z¢* = 05+;03 and
z; = 2—-j0.5. These two normalized impedances are repre-
sented respectively at point A (load) and at point C (source). We
must link these two points by introducing series and parallel ele-
ments. The constraint of needing a low-pass characteristic,
forces us to have a series inductor combined with a parallel
capacitor. The only way to connect point A to point C while satis-
fying this demand is represented in Fig. 3-34. The arc AB corre-
sponds to a shunt capacitor with normalized susceptance
+b = 0.73. The arc BC corresponds to a series inductor with
normalized reactance +x = 1.2. We find the values of the com-
ponents by denormalizing according to the following equations:

series. parallel:
c-_1 c--2
0xR, OR, (3.18)
xR R
;= o =R
® wb
C = b 0'736 = 38.7TpF
Ry 2760x10° x 50
from which: <R
;= 0 _ 1.2 x50 159 H

®  2760x10°
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EXAMPLE 1 (2/2)

38.7 pF == 100725 Q

.||_.

Fig 3-34: Example of two-element impedance matching.
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CONSTANT-Q ARCS

We have seen that when matching networks of more than two
elements, it is possible to choose the quality factor of the cir-
cuit. Fig. 3-35 represents the set of points with quality factor 5.
These are situated on two arcs. The higher the quality factor,
the more the arcs approach the circumference of the exterior
circle representing an infinite quality factor.

Fig 3-35: Constant-Q arcs.
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THREE-ELEMENT NETWORKS

The design procedure using the Smith Chart for three-element

matching circuits is as follows:

1)Draw the arcs corresponding to the specified quality factor;

2)Plot the normalized load impedance and the normalized source
impedance;

3)Determine which of the terminating resistors will set the qual-
ity factor of the circuit: the smaller for T networks, and the
larger for I1 networks;

4)For T networks:
Ry>R;: from the load, move along a constant resistance circle
to the intersection with the constant-Q arc. This arc will
determine the value of the first element. Reach the point z *
by first adding a shunt element and then a series element;
Ry < R;: find the intersection I of the constant-R circle of the
source, with the constant-Q arc. Reach the point I from the
load by using two elements: first a series element followed by
a shunt element. Reach the point z_* by moving around the con-
stant-R circle with the help of another series element.

5)Eor IT networks:
R¢>R;: find the intersection I of the constant conductance
circle of the source with the constant-Q arc. Leave from the
load towards the point I first with a shunt element followed by
a series element. Go toward the point z * on the constant-G
circle by using another shunt element;
Ry<R;: leave from the load on the constant-G circle until
reaching the intersection with the constant-Q arc. The length
of this arc determines the value of the first shunt element. Go
to the point z_* by adding first a series element, followed by a
shunt element.
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EXAMPLE 2 (1/2)

We would like to design a T network to impedance-match a
source Zg = (15+,15)Q with a load impedance Z; = 225Q
for a frequency of 30 MHz and a quality factor of 5.

We normalize with Ry = 75Q and find zg* = 0.2-;0.2 and
z; = 3. Since we want a T network, in this case it is the source
termination that deftermines the quality factor. Following the
procedure for Rg<R;, it is first necessary to determine the
intersection I of the constant-R circle that passes through z*
and the constant-Q arc. Then we must leave from the load to go
to this point I, first with a series inductor L; with reactance
x5 = 2.5 and a shunt capacitor C, with susceptance b, = 1.15.
Then we move around the constant-R circle with a series induc-
tor L; with reactance x; = 0.8. We calculate the values of the
elements according to:

x3R 2.5%x75

L3 = - = = = 995nH
@ 2130%10
b

¢, = —% - LD gipr (3.19)
WOy 2730%x10° x 75

;o xRy  08x75 18]

L= 0 _

®  2730x10°

The resulting circuit and the design process are shown in Fig. 3-
36.

©C.C.ENZ Impedance matching 22.9.10



3-39

EXAMPLE 2 (2/2)

154715
318 nH 995 nH
1) 7Y
—— &1 pF 225 Q
L

Fig 3-36: Example of three-element impedance matching.
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	Impedance matching
	Definition of matching (1/2)
	The active power provided by a source represented by its Thevenin equivalent, of internal impedance with a load impedance is given by:
	(3.1)
	Fig 3-1: Source connected to a load.
	For a given source impedance, the power dissipated in RL is maximum when:

	(3.2)
	and thus when: (3.3)
	The power transfer from a source to a load is therefore maximum when the load impedance is equal to the complex conjugate of the source impedance. This situation corresponds to matching.



	Definition of matching (2/2)
	When the load impedance is matched to the source impedance, the load reactance has the opposite sign from the source reactance, and thus they mutually compensate each other. The resulting circuit corresponds to a series connection of the source and l...
	Fig 3-2: Matching the load.
	Impedance matching is thus only strictly realized at a single frequency, which is the resonant frequency of the series resonant circuit. The matching worsens as the frequency gets farther from the resonant frequency, which can cause problems for circ...


	Principle of impedance matching
	Impedance matching consists of synthesizing a non-dissipating circuit (thus containing only inductors and capacitors) inserted between the source and the load, such that the impedance as seen from the source is equal to the complex conjugate of the s...
	Fig 3-3: Principle of impedance matching.
	All of the following methods are based on the equivalence between the series and parallel circuits illustrated in Fig. 3-4. The unloaded Q is the quality factor of the impedance-matched circuit associated either with the source or the load resistance...

	Fig 3-4: Series / parallel equivalence.

	L networks (1/4)
	When the source and load impedances are purely resistive and , it is necessary to lower the impedance seen from the source by placing a reactance (inductor or capacitor) in parallel with the load. One must then compensate the reactance of the shunt e...
	Fig 3-5: Example of an L circuit, impedance step-down.
	This parallel circuit can be transformed to an equivalent series circuit in which the series resistance will be equal to the source resistance, in this case 50 W. The two have the same quality factor:

	(3.4)
	from which we calculate the reactance of the inductor and the capacitor:
	and thus:


	l networks (2/4)
	The amplitude of the impedance of the circuit in Fig. 3-5 is represented in Fig. 3-6. We note that the reactance of Zin cancels out at the resonant frequency for which the input impedance is equal to 50 W. Notice that the circuit in Fig. 3-5 performs...
	Fig 3-6: Input impedance of the circuit in Fig. 3-5.
	Since the two reactances must be of opposite signs, one of the components will be an inductor and the other a capacitor. There are therefore only two L networks which lower the impedance as seen from the source. They are shown in Fig. 3-7.

	Fig 3-7: L networks, impedance step-down ().

	l networks (3/4)
	When the source and load impedances are purely resistive and , it is necessary to increase the impedance seen from the source by placing a reactance (inductor or capacitor) in series with the load. One must then compensate the reactance of the series...
	Fig 3-8: Example of L network, impedance step-up.
	The series circuit can be transformed to its parallel equivalent according to:

	(3.5)
	One can thus calculate the reactance of the inductor and the capacitor:
	and the values of the components for the desired frequency:


	l networks (4/4)
	The amplitude of the impedance of the circuit in Fig. 3-8 is represented in Fig. 3-6. We note once again that the reactance of Zin cancels out at the resonant frequency for which the input impedance is equal to 3000 W. The circuit in Fig. 3-8 perform...
	Fig 3-9: Input impedance for the circuit in Fig. 3-8.
	There are two L networks which allow us to increase the impedance as seen from the source. They are shown in Fig. 3-10.

	Fig 3-10: L networks, impedance step-up ().

	complex source and load Impedances (1/4)
	In the preceding examples, we supposed that the source and load impedances were real. In reality, they are rarely real. For example, the input and output impedances of a bipolar transistor are always complex. There are two methods for handling the re...
	a) absorption: the reactances of the source and load can be taken into account in the impedance matching network by placing the components such that the functional capacitors of the network are in parallel with the parasitic capacitances and the func...
	b) resonance: cancel out the effect of the reactances of the source and load by placing a reactance of the opposite sign in parallel or in series.
	Note that absorption is only possible when the value of the parasitic element is smaller than that of the functional element from which it must be subtracted. These two techniques can naturally be combined.
	By way of example we synthesize an impedance matching network using the absorption method for the circuit in Fig. 3-11.

	Fig 3-11: Complex source and load impedances.
	At first we ignore the source and load reactances. The load resistance being larger than the source resistance, we choose the L network of Fig. 3-7 a).


	complex source and load Impedances (2/4)
	The quality factor is given by:
	from which we get:
	We thus obtain the diagram shown in Fig. 3-12 a). By then subtracting the value of the 477nH series source inductance and the value of the 4.8 pF parallel load capacitance, we obtain the diagram in Fig. 3-12 b).
	Fig 3-12: Illustration of the absorption method.

	complex source and load Impedances (3/4)
	Another example, illustrating the load resonance technique, is given in Fig. 3-13 a). We want to synthesize a high-pass impedance-matching circuit. The fact that the load resistance is larger than the source resistance means that we must use the circ...
	We therefore get the circuit of Fig. 3-13 b) from which we can calculate the elements of the L network:
	We thus obtain the circuit in Fig. 3-13 c) which can be simplified further by calculating the equivalent inductance for the two parallel inductances connected to the load. Finally, we obtain the circuit in Fig. 3-13 d).

	complex source and load Impedances (4/4)
	Fig 3-13: Illustration of the resonance technique.

	three-element matching networks
	The disavantage of L networks comes from the fact that when the source and load resistances are specified, the quality factor and therefore the selectivity of the impedance-matching network are likewise specified (cf Eqn. 3.4 and 3.5). There are then...
	There are two types of three-element matching networks (cf Fig. 3-14):
	1) P networks;
	2) T networks;
	Fig 3-14: 3-element matching networks.

	P networks
	One can describe the P network as the connection of two L networks with a virtual resistance as shown in the diagram in Fig. 3- 15. This virtual resistance is just used to dimension the elements of the L networks. The reactances Xs1 and Xp1 as well a...
	Fig 3-15: P network represented as two L networks.
	The virtual resistance Rvirt represents the resistance seen from the center point with , from which we get . In addition, the resistance seen from the source must be equal to RS , imposing with and therefore . We remark that for the quality factors Q...

	(3.6)
	where Rmax represents the larger of the resistances RS or RL.


	P network example (1/2)
	As an example, we will match a load resistance of 50 W to a source resistance of 3000 W by using a P network, conserving a quality factor of 10 (cf Fig. 3-16).
	Fig 3-16: Example of designing a P network.
	The frequency is equal to 1 MHz. Rvirt is calculated from Eqn. 3.6 with Rmax = RS = 3000 W:
	The reactances of the first section are thus given by:
	The quality factor of the second L network section is then set by the resistances Rvirt and RL:
	The resistance RL must now be matched to the virtual resistance. Since it appears in a parallel branch, we have:
	As a result of choosing inductors for the series branches, the shunt branches will therefore be capacitors:


	P network example (2/2)
	We finally obtain the circuit shown in Fig. 3-17 a), for which the magnitude of the input impedance is shown as a function of the frequency in Fig. 3-17 b). We notice that the imposed quality factor corresponds well to the bandwidth at -3 dB and that...
	Fig 3-17: Example of the design of a P network.

	T networks
	The T network can be described as two back-to-back L networks of which the shunt branches are in parallel, as shown in Fig. 3-18. The difference with respect to the P network is that in the T network, the virtual resistance is larger than both the so...
	Fig 3-18: The T network represented as two L networks.
	The quality factor of the T network is determined by the L network section with the higher quality factor. By definition, the section with the higher quality factor is at the side with the smaller terminating resistor. Q is determined by the formula:

	(3.7)
	where Rmin is the smaller terminating resistor.


	T network example
	As an example, we would like to design a T network to match a source resistance of 10 W to a load resistance of 50 W with a quality factor of 10. We would like to use a minimum number of inductors, and we want the resulting filter to be of type passband
	The virtual resistance is calculated from Eqn. 3.7:
	The section with the higher quality factor is on the source side. The reactances of the corresponding L network section are:
	The quality factor of the L network section on the load side is determined by the resistances Rvirt and RL:
	One possible design in which there is only one inductor and the filtering characteristic is of type passband is shown in Fig. 3-19.
	Fig 3-19: Example of T network.

	wideband impedance matching (1/2)
	Up until now we have seen L networks for which the quality factor was determined by the source and load resistances, and P and T networks which allow us to choose a quality factor independently of the source and load, as long as it is higher than tha...
	Fig 3-20: Low quality factor (wideband) matching network.

	wideband impedance matching (2/2)
	The minimum quality factor and therefore the maximum bandwidth are obtained when:
	(3.8)
	The quality factor is thus defined by:

	(3.9)
	where Rvirt is the virtual resistance and Rmin and Rmax are, respectively, the smaller and larger terminating resistances.


	matching with an autotransformer
	The impedance matching of two circuits can also be carried out by using an inductor with a central lead (or autotransformer) or a capacitive divider. These matching networks are useful when one wants to create, for example, a parallel resonant circui...
	Fig 3-21: Impedance matching by autotransformer.
	The equivalent resistance in parallel with the LC circuit is equal to the lo ad resistance RL multiplied by a factor :

	(3.10)

	impedance matching with a capacitive divider
	It is also possible to do impedance matching with a capacitive divider, as shown in Fig. 3-22.
	Fig 3-22: Impedance matching with a capacitive divider.
	The admittance Y appearing in parallel with the inductance L in the diagram in Fig. 3-22 a) has the value:

	(3.11)
	For frequencies , this admittance can be broken up into a parallel conductance

	(3.12)
	and a capacitance C equal to the series connection of C1 and C2. The resistance seen at the terminals of the circuit at the resonant frequency of the parallel LC is thus equal to the load resistance multiplied by a factor :

	(3.13)

	Smith charts
	The Smith Chart is probably one of the most useful graphical tools for the conception of HF circuits, and specifically for the synthesis of impedance matching networks. It was invented in the 1930’s by an engineer at Bell Labs named Phillip Smith. ...
	(3.14)
	where Z0 is the normalization impedance, usually 50 W. The Smith Chart lets us find the impedance z when we know the reflection coefficient G or vice versa.

	Fig 3-23: Transformation of the z plane to the G plane.
	By setting and , and knowing r and x, p and q must be determined from the following relationship:

	(3.15)

	smith chart Construction (1/2)
	Constant resistance circles
	By setting the real and imaginary parts of Eqn. 3.15 to be equal, we find the equations which describe the curves of constant r:
	(3.16)
	as well as those of constant x:

	(3.17)
	The curves for defined by Eqn. 3.16 are circles with radius of which the center is located on the real axis at the point . The two intersections with the real axis are located at and 1. For r varying from 0 to 10, we obtain the network of circles sho...

	Fig 3-24: Constant resistance circles


	smith chart Construction (2/2)
	Constant reactance circles
	The curves with defined by Eqn. 3.17 are also circles, with radius of which the center is located at coordinates . For x varying from 0.1 to 10, we get the network of circles shown in Fig. 3-25. Each point of one of these circles has the same (normal...
	Fig 3-25: Constant reactance circles.


	impedance charts
	The superposition of constant resistance and constant reactance circles gives the complete Smith Chart of impedances, as shown in Fig. 3-26. The exterior circle corresponds to zero resistance or a purely imaginary impedance. The upper part correspond...
	Fig 3-26: Impedance chart.

	Addition of a series capacitor
	Fig. 3-27 represents the effect of the series addition of a normalized negative reactance –j1.0 (corresponding to a capacitance) with a normalized impedance . The resulting impedance is thus given by . The series addition of this capacitor correspo...
	Fig 3-27: Addition of a series capacitor.

	Addition of a series inductor
	Fig. 3-28 represents the effect of the series addition of a positive reactance j1.8 (corresponding to an inductance) with a normalized impedance . The resulting impedance is equal to . The series addition of this inductor corresponds graphically to m...
	Fig 3-28: Addition of a series inductor.

	Converting impedance to admittance
	The Smith Chart can be used to convert an impedance z to an admittance . Let’s look at , for example. The corresponding admittance is . The two corresponding points are shown in Fig. 3-29. Note that they are the same distance d from the origin, but...
	Fig 3-29: Conversion of impedance to admittance.

	combined impedance and admittance chart
	By rotating the impedance chart by 180°, we obtain the admittance chart. Fig. 3-30 shows the superposition of these two charts. One single point now simultaneously corresponds to an impedance and its admittance, of which the values can be read from ...
	Fig 3-30: The complete Smith chart.

	Addition of a shunt capacitor
	Fig. 3-31 shows the effect of the series addition of a positive susceptance +j0.8 (capacitance) to an admittance of , resulting in an admittance . From a graphical point of view, the parallel addition of a capacitor corresponds to moving around a con...
	Fig 3-31: Addition of a shunt capacitor.

	Addition of a shunt inductor
	Fig. 3-32 shows the effect of the parallel addition of a negative susceptance –j1.5 (inductance) to an admittance . The resulting admittance is . This operation corresponds graphically to moving around a constant conductance circle counter-clockwise.
	Fig 3-32: Addition of a shunt inductor.

	summary of smith chart manipulation
	Fig. 3-32 presents a summary of the effect of the addition of components on a Smith Chart.
	Fig 3-33: Summary of the manipulation of components on the Smith Chart.

	Example 1 (1/2)
	Design a two-element circuit to impedance-match a source impedance to a load impedance for a frequency of 60 MHz. The transfer function should be of type low-pass.
	The impedance that must be seen by the source is its complex conjugate, . Thus, we must transform the load impedance to an impedance . We choose to normalize the impedance to , so: and . These two normalized impedances are represented respectively at...
	(3.18)
	from which:


	Example 1 (2/2)
	Fig 3-34: Example of two-element impedance matching.

	constant-q arcs
	We have seen that when matching networks of more than two elements, it is possible to choose the quality factor of the circuit. Fig. 3-35 represents the set of points with quality factor 5. These are situated on two arcs. The higher the quality facto...
	Fig 3-35: Constant-Q arcs.

	three-element networks
	The design procedure using the Smith Chart for three-element matching circuits is as follows:
	1) Draw the arcs corresponding to the specified quality factor;
	2) Plot the normalized load impedance and the normalized source impedance;
	3) Determine which of the terminating resistors will set the quality factor of the circuit: the smaller for T networks, and the larger for P networks;
	4) For T networks: : from the load, move along a constant resistance circle to the intersection with the constant-Q arc. This arc will determine the value of the first element. Reach the point by first adding a shunt element and then a series element...
	5) For P networks: : find the intersection I of the constant conductance circle of the source with the constant-Q arc. Leave from the load towards the point I first with a shunt element followed by a series element. Go toward the point on the constan...

	Example 2 (1/2)
	We would like to design a T network to impedance-match a source with a load impedance for a frequency of 30 MHz and a quality factor of 5.
	We normalize with and find and . Since we want a T network, in this case it is the source termination that determines the quality factor. Following the procedure for , it is first necessary to determine the intersection I of the constant-R circle tha...
	(3.19)
	The resulting circuit and the design process are shown in Fig. 3- 36.


	Example 2 (2/2)
	Fig 3-36: Example of three-element impedance matching.


