
CHAPTER 3

IMPEDANCE MATCHING
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DEFINITION OF MATCHING (1/2)

The active power provided by a source represented by its 
Thevenin equivalent, of internal impedance ZS RS jXS+≡  with a 
load impedance ZL RL jXL+≡  is given by:

P RL I 2 RL
VS

ZS ZL+---------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 2 RLVS

2

RS RL+( )2 XS XL+( )2+
------------------------------------------------------------= = =

Fig 3-1: Source connected to a load.

ZS

ZLVS VL

I

(3.1)

For a given source impedance, the power dissipated in RL is max-
imum when:

XL∂
∂P 0= XL⇒ XS–=

RL∂
∂P 0= RS

2 RL
2– XS XL+( )2+⇒ 0= RL⇒ RS=

(3.2)

and thus when: ZL ZS∗= (3.3)

The power transfer from a source to a load is therefore maxi-
mum when the load impedance is equal to the complex conjugate 
of the source impedance. This situation corresponds to match-
ing.
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DEFINITION OF MATCHING (2/2)

When the load impedance is matched to the source impedance, 
the load reactance has the opposite sign from the source reac-
tance, and thus they mutually compensate each other. The 
resulting circuit corresponds to a series connection of the 
source and load resistances, which are equal, permitting a maxi-
mum transfer of power from the source to the load. If the 
source reactance is that of an inductance, the load reactance 
should be that of a capacitance, and vice versa. This matching is 
only valid at the resonance frequency of the inductance and 
capacitance in series. 

Fig 3-2: Matching the load.
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Impedance matching is thus only strictly realized at a single fre-
quency, which is the resonant frequency of the series resonant 
circuit. The matching worsens as the frequency gets farther 
from the resonant frequency, which can cause problems for cir-
cuits with a large passband. There are methods for increasing 
the band of frequencies for which there is matching and there-
fore maximum power transfer. These methods generally use cir-
cuits with a low quality factor. 
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PRINCIPLE OF IMPEDANCE MATCHING

Impedance matching consists of synthesizing a non-dissipating 
circuit (thus containing only inductors and capacitors) inserted 
between the source and the load, such that the impedance as 
seen from the source is equal to the complex conjugate of the 
source impedance. Of course there are an infinite number of cir-
cuits, more or less complex, that satisfy this criterion.

Fig 3-3: Principle of impedance matching.
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All of the following methods are based on the equivalence 
between the series and parallel circuits illustrated in Fig. 3-4. 
The unloaded Q is the quality factor of the impedance-matched 
circuit associated either with the source or the load resistance. 
The loaded Q is the quality factor of the complete circuit (with 
the source and load). Since RS RL= , the loaded quality factor 
is equal to half of the unloaded quality factor.

Fig 3-4: Series / parallel equivalence.
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L NETWORKS (1/4)

When the source and load impedances are purely resistive and 
RL RS> , it is necessary to lower the impedance seen from the 
source by placing a reactance (inductor or capacitor) in parallel 
with the load. One must then compensate the reactance of the 
shunt element just added by placing a reactance with the oppo-
site sign in series. In the case shown in Fig. 3-5 there is a capac-
itor C in parallel with the load RL .

Fig 3-5: Example of an L circuit, impedance step-down.

Cs

RL = 3000 ΩC

L L

circuit parallèle series equivalent circuit

Rin = 50 Ω @ 1 MHz Rin = 50 Ω @ 1 MHz

Q
RL
Rin
-------- 1–=

Rs Rin=

This parallel circuit can be transformed to an equivalent series 
circuit in which the series resistance will be equal to the source 
resistance, in this case 50 Ω. The two have the same quality fac-
tor:

Rs
RL

1 Q2+
----------------= Q⇒

RL
Rs
------ 1– 3000

50
------------ 1– 7.7= = = (3.4)

from which we calculate the reactance of the inductor and the 
capacitor:

XL XCs QRs QRin 7.7 50× 384Ω= = = = =

XC RL Q⁄ 3000 7.7⁄ 391Ω= = =

and thus:
L XL 2πf( )⁄ 384 2π 106×( )⁄ 69μH= = =

C 1 2πfXC( )⁄ 1 2π 106 391××( )⁄ 407.5pF= = =
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L NETWORKS (2/4)

The amplitude of the impedance of the circuit in Fig. 3-5 is rep-
resented in Fig. 3-6. We note that the reactance of Zin cancels 
out at the resonant frequency for which the input impedance is 
equal to 50 Ω. Notice that the circuit in Fig. 3-5 performs low-
pass filtering. In certain cases, a high-pass characteristic is 
preferable, and is obtained by simply switching the capacitor and 
the inductor.

Fig 3-6: Input impedance of the circuit in Fig. 3-5.
Since the two reactances must be of opposite signs, one of the 
components will be an inductor and the other a capacitor. There 
are therefore only two L networks which lower the impedance as 
seen from the source. They are shown in Fig. 3-7.

Fig 3-7: L networks, impedance step-down (RL RS> ).
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a) Low-pass filter. b) High-pass filter.
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L NETWORKS (3/4)

When the source and load impedances are purely resistive and 
RL RS< , it is necessary to increase the impedance seen from 
the source by placing a reactance (inductor or capacitor) in 
series with the load. One must then compensate the reactance 
of the series element just added by placing a reactance of oppo-
site sign in parallel. In the case shown in Fig. 3-8, an inductor L
has been placed in series with the load RL .

Fig 3-8: Example of L network, impedance step-up.

LpRL = 50 ΩC
L

series circuit equivalent parallel circuit

Rin = 3000 Ω @ 1 MHz Rin = 3000 Ω @ 1 MHz

Q
Rin
RL
-------- 1–=

C Rp Rin=

The series circuit can be transformed to its parallel equivalent 
according to:

Rp RL 1 Q2+( )= Q⇒
Rp
RL
------ 1–

Rin
RL
-------- 1– 7.7= = = (3.5)

One can thus calculate the reactance of the inductor and the 
capacitor:

XC XLp Rp Q⁄ Rin Q⁄ 3000 7.7⁄ 391Ω= = = = =

XL QRL 7.7 50× 384Ω= = =

and the values of the components for the desired frequency:
C 1 2πfXC( )⁄ 1 2π 106 391××( )⁄ 407.5pF= = =

L XL 2πf( )⁄ 384 2π 106×( )⁄ 61.1µH= = =
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L NETWORKS (4/4)

The amplitude of the impedance of the circuit in Fig. 3-8 is rep-
resented in Fig. 3-6. We note once again that the reactance of 
Zin cancels out at the resonant frequency for which the input 
impedance is equal to 3000 Ω. The circuit in Fig. 3-8 performs 
low-pass filtering, which can be changed to high-pass filtering by 
simply switching the inductor and the capacitor.

Fig 3-9: Input impedance for the circuit in Fig. 3-8.
There are two L networks which allow us to increase the imped-
ance as seen from the source. They are shown in Fig. 3-10.

Fig 3-10: L networks, impedance step-up (RL RS< ).
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a) Low-pass filter. b) High-pass filter.
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COMPLEX SOURCE AND LOAD IMPEDANCES (1/4)

In the preceding examples, we supposed that the source and load 
impedances were real. In reality, they are rarely real. For exam-
ple, the input and output impedances of a bipolar transistor are 
always complex. There are two methods for handling the reac-
tances of the source and load:

a)absorption: the reactances of the source and load can be 
taken into account in the impedance matching network by 
placing the components such that the functional capacitors 
of the network are in parallel with the parasitic capaci-
tances and the functional inductors in series with the para-
sitic inductances.

b)resonance: cancel out the effect of the reactances of the 
source and load by placing a reactance of the opposite sign 
in parallel or in series.

Note that absorption is only possible when the value of the para-
sitic element is smaller than that of the functional element from 
which it must be subtracted. These two techniques can naturally 
be combined.
By way of example we synthesize an impedance matching net-
work using the absorption method for the circuit in Fig. 3-11.

Fig 3-11: Complex source and load impedances.

impedance

matching

network

VS

100 Ω +j126

2 pF 1000 Ω

f = 100 MHz

At first we ignore the source and load reactances. The load 
resistance being larger than the source resistance, we choose 
the L network of Fig. 3-7 a).
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COMPLEX SOURCE AND LOAD IMPEDANCES (2/4)

The quality factor is given by:
Q RL RS⁄ 1– 3= =

from which we get:

Xs QRS 3 100× 300Ω= = = L⇒
Xs
2πf
-------- 300

2π 108×
--------------------- 477nH= = =

Xp
Rp
Q
------

RL
Q
------ 1000

3
------------ 333Ω C⇒ 1

2πfXp
--------------- 1

2π 108 333××
------------------------------------- 4.8pF= = = = = = =

We thus obtain the diagram shown in Fig. 3-12 a). By then sub-
tracting the value of the 477nH series source inductance and 
the value of the 4.8 pF parallel load capacitance, we obtain the 
diagram in Fig. 3-12 b)

Fig 3-12: Illustration of the absorption method.

VS

100 Ω

1000 Ω

477 nH

4.8 pF

a) 

VS

100 Ω 

1000 Ω

277 nH

2 pF2.8 pF

200 nH

Zin = 100 – j126 Ω @ 100 MHz

b) 

.
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COMPLEX SOURCE AND LOAD IMPEDANCES (3/4)

Another example, illustrating the load resonance technique, is 
given in Fig. 3-13 a). We want to synthesize a high-pass imped-
ance-matching circuit. The fact that the load resistance is 
larger than the source resistance means that we must use the 
circuit shown in Fig. 3-7 b). But before calculating the elements 
of the L network, we must rid ourselves of the load capacitance 
by connecting a parallel inductor whose value is calculated 
according to:

L 1
2πf( )2CL

----------------------- 1

2π 75 6×10×( )2 40 12–×10×
-------------------------------------------------------------------- 112.6nH= = =

We therefore get the circuit of Fig. 3-13 b) from which we can 
calculate the elements of the L network:

Q
RL
RS
------ 1– 600

50
--------- 1– 3.32= = =

Xs QRS 3.32 50× 166Ω C 1
2πfXs
-------------- 1

2π 75 6×10 166××
---------------------------------------------- 12.78pF= = =⇒= = =

Xp
Rp
Q
------

RL
Q
------ 600

3.32
---------- 181Ω L

Xp
2πf
-------- 181

2π 75 6×10×
------------------------------- 384nH= = =⇒= = = =

We thus obtain the circuit in Fig. 3-13 c) which can be simplified 
further by calculating the equivalent inductance for the two par-
allel inductances connected to the load. Finally, we obtain the 
circuit in Fig. 3-13 d).
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COMPLEX SOURCE AND LOAD IMPEDANCES (4/4)

Fig 3-13: Illustration of the resonance technique.
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50 Ω
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a) Circuit with complex load.

impedance

matching

network

VS

50 Ω

40 pF 600 Ω112.6 nH

Z = 600 Ω @ 75 MHz
b) Addition of an inductor to compensate the load capacitance by resonance.

VS

50 Ω

40 pF 600 Ω112.6 nH

12.78 pF

384 nH

c) Synthesis of an L network for a resistive load.

VS

50 Ω

40 pF 600 Ω

12.78 pF

87 nH

d) Final circuit.
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THREE-ELEMENT MATCHING NETWORKS

The disavantage of L networks comes from the fact that when 
the source and load resistances are specified, the quality factor 
and therefore the selectivity of the impedance-matching net-
work are likewise specified (cf Eqn. 3.4 and 3.5). There are then 
not enough degrees of freedom to choose the quality factor 
independently, which can be irritating for certain applications in 
which we want selectivity. To compensate for this problem, it is 
possible to add an element and thus a degree of freedom permit-
ting us to set the quality factor. This Q will necessarily be larger 
than the quality factor corresponding to an L network. The L 
network is thus the impedance-matching network having the min-
imum quality factor. 
There are two types of three-element matching networks 
(cf Fig. 3-14):

1)Π networks;
2)Τ networks;

Fig 3-14: 3-element matching networks.

VS

RS
X2

X1 X3 RL

a) Π network.

VS

RS

X2

X1 X3

RL

b) Τ network.
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Π NETWORKS

One can describe the Π network as the connection of two L net-
works with a virtual resistance as shown in the diagram in Fig. 3-
15. This virtual resistance is just used to dimension the elements 
of the L networks. The reactances Xs1 and Xp1 as well as Xs2 and 
Xp2 must be of different types (if for example Xs1 corresponds 
to a capacitance, Xp1 must correspond to an inductance).

Fig 3-15: Π network represented as two L networks.

VS

RS
Xs1

Xp1 Xp2 RL

Xs2

Rvirt

virtual resistance

Rin2 Rvirt
RL

1 Q2
2+

----------------= =Rin1 RS Rvirt 1 Q1
2+( )= =

The virtual resistance Rvirt represents the resistance seen from 
the center point Rin2 Rvirt RL 1 Q2

2+( )⁄= =  with Q2 RL Xp2⁄= , from 
which we get Q2 RL Rvirt⁄ 1–= . In addition, the resistance seen 
from the source must be equal to RS , imposing 
Rin1 RS Rvirt 1 Q1

2+( )= =  with Q1 Xs1 Rvirt⁄=  and therefore 
Q1 RS Rvirt⁄ 1–= . We remark that for the quality factors Q1 and 
Q2 to exist, the virtual resistance must be less than RS or RL . 
The quality factor of the Π network is associated to that of the 
L network section having the larger quality factor, and the sec-
tion having the larger quality factor is on the side with the 
higher terminating impedance. This gives us the definition of the 
quality factor of a Π network:

QΠ
Rmax
Rvirt
------------ 1–≡ (3.6)

where Rmax represents the larger of the resistances RS or RL.
© C. C. ENZ Impedance matching 22.9.10
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Π NETWORK EXAMPLE (1/2)

As an example, we will match a load resistance of 50 Ω to a 
source resistance of 3000 Ω by using a Π network, conserving a 
quality factor of 10 (cf Fig. 3-16).

Fig 3-16: Example of designing a Π network.

VS

RS = 3000 Ω
X2

X1 X3 RL = 50 Ω

Q = 10

 

The frequency is equal to 1 MHz. Rvirt is calculated from Eqn. 3.6 
with Rmax = RS = 3000 Ω:

Rvirt
Rmax

1 Q2+
---------------- 3000

101
------------ 29.703Ω= = =

The reactances of the first section are thus given by:
Xp1 RS Q⁄ 3000 10⁄ 300Ω= = =

Xs1 QRvirt 10 29.7× 297.03Ω= = =

The quality factor of the second L network section is then set 
by the resistances Rvirt and RL:

Q2
RL

Rvirt
----------- 1– 50

29.703---------------- 1– 0.8266= = =

The resistance RL must now be matched to the virtual resist-
ance. Since it appears in a parallel branch, we have: 

Xs2 Q2Rvirt 0.8266 29.7× 24.55Ω= = =

Xp2 RL Q2⁄ 50 0.8266⁄ 60.49Ω= = =

As a result of choosing inductors for the series branches, the 
shunt branches will therefore be capacitors: 

C1
1

2πfXp1
------------------ 530.5pF= = L1 Xs1 2πf( )⁄ 47.27μH= =

C2
1

2πfXp2
------------------ 2631pF= = L2 Xs2 2πf( )⁄ 3.9μH= =
© C. C. ENZ Impedance matching 22.9.10
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Π NETWORK EXAMPLE (2/2)

We finally obtain the circuit shown in Fig. 3-17 a), for which the 
magnitude of the input impedance is shown as a function of the 
frequency in Fig. 3-17 b). We notice that the imposed quality 
factor corresponds well to the bandwidth at -3 dB and that the 
form factor is larger than that of Fig. 3-6, because this is a 3rd

order filter.

Fig 3-17: Example of the design of a Π network.

VS

3000 Ω

530.5 pF

47.27 + 3.9 = 51.18 μΗ

2631 pF 50 Ω

a) Final circuit.

B
f0
Q
---- 1MHz

10
--------------- 100kHz= = =

RS

2
-------

b) Input impedance of the circuit in Fig. 3-17 a).
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Τ NETWORKS

The Τ network can be described as two back-to-back L networks 
of which the shunt branches are in parallel, as shown in Fig. 3-18. 
The difference with respect to the Π network is that in the Τ
network, the virtual resistance is larger than both the source 
and load resistances. The Τ network is often used for matching 
small impedances with a high quality factor.

Fig 3-18: The Τ network represented as two L networks.

VS

RS
Xs1

Xp1 Xp2 RL

Xs2

Rvirt

virtual resistance

The quality factor of the Τ network is determined by the L net-
work section with the higher quality factor. By definition, the 
section with the higher quality factor is at the side with the 
smaller terminating resistor. Q is determined by the formula:

QΤ
Rvirt
Rmin
----------- 1–≡ (3.7)

where Rmin is the smaller terminating resistor.
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Τ NETWORK EXAMPLE

As an example, we would like to design a Τ network to match a 
source resistance of 10 Ω to a load resistance of 50 Ω with a 
quality factor of 10. We would like to use a minimum number of 
inductors, and we want the resulting filter to be of type pass-
band. 
The virtual resistance is calculated from Eqn. 3.7:

Rvirt Rmin Q2 1+( ) RS Q2 1+( ) 10 101× 1010Ω= = = =

The section with the higher quality factor is on the source side. 
The reactances of the corresponding L network section are:

Xs1 QRS 10 10× 100Ω= = = Xp1 Rvirt Q⁄ 1010 10⁄ 101Ω= = =

The quality factor of the L network section on the load side is 
determined by the resistances Rvirt and RL:

Q2 Rvirt RL⁄ 1– 1010 50⁄ 1– 4.4= = =

Xp2 Rvirt Q2⁄ 1010 4.4⁄ 230Ω= = = Xs2 Q2RL 4.4 50× 220Ω= = =

One possible design in which there is only one inductor and the 
filtering characteristic is of type passband is shown in Fig. 3-19.

Fig 3-19: Example of Τ network.

VS

10 Ω 100 Ω 220 Ω

231 Ω101 Ω 50 Ω

a) 

VS

10 Ω 100 Ω 220 Ω

179 Ω 50 Ω

b) 
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WIDEBAND IMPEDANCE MATCHING (1/2)

Up until now we have seen L networks for which the quality fac-
tor was determined by the source and load resistances, and Π
and Τ networks which allow us to choose a quality factor inde-
pendently of the source and load, as long as it is higher than that 
of the L network. These circuits are thus appropriate for nar-
row-band impedance matching. To match impedances over a 
wider band (or to have a quality factor smaller than that of the 
simple L network), we can use two cascaded L networks like 
those presented in Fig. 3-20. In these configurations, the value 
of the virtual resistance must be between those of the termina-
tion resistances, with the result that the quality factor goes 
from that of an L network to that of a Π or Τ network.

Fig 3-20: Low quality factor (wideband) matching network.

VS

RS
Xs1

Xp1 Xp2 RL

Xs2

Rvirt

virtual resistance

a) It can be proved that RL must be smaller than RS to use this configuration.

VS

RS
Xs1

Xp1 Xp2 RL

Xs2

Rvirt

virtual resistance

b) It can be proved that RL must be larger than RS to use this configuration.
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WIDEBAND IMPEDANCE MATCHING (2/2)

The minimum quality factor and therefore the maximum band-
width are obtained when:

Rvirt RSRL= (3.8)

The quality factor is thus defined by:

Q
Rvirt
Rmin
----------- 1–≡

Rmax
Rvirt
------------ 1–= (3.9)

where Rvirt is the virtual resistance and Rmin and Rmax are, 
respectively, the smaller and larger terminating resistances. 
© C. C. ENZ Impedance matching 22.9.10
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MATCHING WITH AN AUTOTRANSFORMER

The impedance matching of two circuits can also be carried out 
by using an inductor with a central lead (or autotransformer) or 
a capacitive divider. These matching networks are useful when 
one wants to create, for example, a parallel resonant circuit with 
a high quality factor, loaded with a small impedance.

Fig 3-21: Impedance matching by autotransformer.

L2

C
L1

I1

I2

RL

V1
N1

N2

LCV1 n2RL

k
M L2+

LL2
-----------------≡L L1 L2 2M+ +=

n k L
L2
------⋅ L

L2
------≅=

I1

a) Autotransformer. b) Equivalent circuit.

The equivalent resistance in parallel with the LC circuit is equal 
to the load resistance RL multiplied by a factor n2 :

R'L n2 RL⋅ L
L2
----- RL⋅≅= (3.10)
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IMPEDANCE MATCHING WITH A CAPACITIVE DIVIDER 

It is also possible to do impedance matching with a capacitive 
divider, as shown in Fig. 3-22.

Fig 3-22: Impedance matching with a capacitive divider.

L

RL

V1

C1

C2

admittance Y

LV1 C

C
C1C2

C1 C2+--------------------=

n2RL

n
C1 C2+

C1
-------------------- 1

C2
C1
------+= =

a) Capacitive divider. b) Equivalent circuit.

The admittance Y appearing in parallel with the inductance L in 
the diagram in Fig. 3-22 a) has the value:

Y s( ) sC1
1 sRLC2+

1 sRL C1 C2+( )+--------------------------------------------⋅ Gp j Xp⋅+= = (3.11)

For frequencies ω>> RLC2( ) 1– RL C1 C2+( )[ ] 1–> , this 
admittance can be broken up into a parallel conductance

Gp
1

R'L
-------≡

ωC1( )2RL

1 ωRL C1 C2+( )( )2+
----------------------------------------------------- 1

RL 1 C2 C1⁄+[ ]2-----------------------------------------≅= (3.12)

and a capacitance C equal to the series connection of C1 and C2. 
The resistance seen at the terminals of the circuit at the reso-
nant frequency of the parallel LC is thus equal to the load resist-
ance multiplied by a factor n2 :

R'L n2 RL⋅ 1
C2
C1
------+

2
RL⋅= = (3.13)
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SMITH CHARTS

The Smith Chart is probably one of the most useful graphical 
tools for the conception of HF circuits, and specifically for the 
synthesis of impedance matching networks. It was invented in 
the 1930’s by an engineer at Bell Labs named Phillip Smith. The 
Smith Chart is a bilinear transformation of the plane of normal-
ized impedances z to the plane of the reflection coefficient Γ:

Γ z 1–
z 1+-----------

Z Z0⁄ 1–
Z Z0⁄ 1+----------------------

Z Z0–
Z Z0+---------------= = = (3.14)

where Z0 is the normalization impedance, usually 50 Ω. The 
Smith Chart lets us find the impedance z when we know the 
reflection coefficient Γ or vice versa.

Fig 3-23: Transformation of the z plane to the Γ plane.
z plane Γ plane

z r jx+= Γ p jq+=
Im

Re
r

x

p

q

Im

Re

By setting z r jx+=  and Γ p jq+= , and knowing r and x, p
and q must be determined from the following relationship:

Γ p jq+ r 1–( ) jx+
r 1+( ) jx+---------------------------= = (3.15)
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SMITH CHART CONSTRUCTION (1/2)

Constant resistance circles

By setting the real and imaginary parts of Eqn. 3.15 to be equal, 
we find the equations which describe the curves of constant r:

p r
r 1+-----------–⎝ ⎠

⎛ ⎞ 2
q2+ 1

r 1+-----------⎝ ⎠
⎛ ⎞ 2

= (3.16)

as well as those of constant x:

p 1–( )2 q 1
x
---–⎝ ⎠

⎛ ⎞ 2
+ 1

x
---⎝ ⎠

⎛ ⎞ 2
= (3.17)

The curves for r const=  defined by Eqn. 3.16 are circles with 
radius 1 r 1+( )⁄  of which the center is located on the real axis 
at the point r r 1+( )⁄ . The two intersections with the real axis 
are located at r 1–( ) r 1+( )⁄  and 1. For r varying from 0 to 10, 
we obtain the network of circles shown in Fig. 3-24. Each point 
on one of these circles has the same (normalized) resistance.

Fig 3-24: Constant resistance circles

circles with r=const

z plane Γ plane

Im

Re

r=const.
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SMITH CHART CONSTRUCTION (2/2)

Constant reactance circles

The curves with x const=  defined by Eqn. 3.17 are also cir-
cles, with radius 1 x⁄  of which the center is located at coordi-
nates 1 1 x⁄,( ) . For x varying from 0.1 to 10, we get the network 
of circles shown in Fig. 3-25. Each point of one of these circles 
has the same (normalized) reactance.

Fig 3-25: Constant reactance circles.

circles with x=const

z plane Γ plane

Im

Re

x
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s
c

e

IMPEDANCE CHARTS

The superposition of constant resistance and constant reactance 
circles gives the complete Smith Chart of impedances, as shown 
in Fig. 3-26. The exterior circle corresponds to zero resistance 
or a purely imaginary impedance. The upper part corresponds to 
a positive reactance and thus to an inductance, while the lower 
part corresponds to a negative reactance and thus to a capaci-
tance. The horizontal diameter corresponds to zero reactance 
and thus to a purely resistive impedance.

Fig 3-26: Impedance chart.
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ADDITION OF A SERIES CAPACITOR

Fig. 3-27 represents the effect of the series addition of a nor-
malized negative reactance –j1.0 (corresponding to a capaci-
tance) with a normalized impedance z 0.5 j0.7+= . The 
resulting impedance is thus given by 
z 0.5 j0.7 j1.0–+ 0.5 j0.3–= = . The series addition of this 
capacitor corresponds graphically to moving around the constant 
resistance circle r 0.5=  counter-clockwise.

Fig 3-27: Addition of a series capacitor.

0.5 j0.7

0.5 –j0.3
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ADDITION OF A SERIES INDUCTOR

Fig. 3-28 represents the effect of the series addition of a posi-
tive reactance j1.8 (corresponding to an inductance) with a nor-
malized impedance z 0.8 j1.0–= . The resulting impedance is 
equal to z 0.8 j1.0– j1.8+ 0.8 j0.8+= = . The series addition 
of this inductor corresponds graphically to moving around the 
constant resistance circle 0.8 clockwise.

Fig 3-28: Addition of a series inductor.

0.8 –j1.0

0.8 –j1.0 +j1.8
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CONVERTING IMPEDANCE TO ADMITTANCE

The Smith Chart can be used to convert an impedance z to an 
admittance y 1 z⁄ g jb±= = . Let’s look at z 1 j+= , for 
example. The corresponding admittance is 
y 1 z⁄ 0.5 j0.5–= = . The two corresponding points are shown 
in Fig. 3-29. Note that they are the same distance d from the 
origin, but in opposite directions. On the Smith Chart, one easily 
finds the admittance corresponding to an impedance by moving 
the distance between z and the origin, but in the opposite direc-
tion.

Fig 3-29: Conversion of impedance to admittance.

1.0 +j1.0

= d
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COMBINED IMPEDANCE AND ADMITTANCE CHART

By rotating the impedance chart by 180°, we obtain the admit-
tance chart. Fig. 3-30 shows the superposition of these two 
charts. One single point now simultaneously corresponds to an 
impedance and its admittance, of which the values can be read 
from the respective charts. Notice that because the admittance 
chart is found by the 180° rotation of the impedance chart, the 
upper half corresponds to negative susceptances (inductances) 
and the lower half to positive susceptances (capacitances).

Fig 3-30: The complete Smith chart.
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ADDITION OF A SHUNT CAPACITOR

Fig. 3-31 shows the effect of the series addition of a positive 
susceptance +j0.8 (capacitance) to an admittance of 
y 0.2 j0.5–= , resulting in an admittance y 0.2 j0.3+= . From 
a graphical point of view, the parallel addition of a capacitor cor-
responds to moving around a constant conductance circle clock-
wise.

Fig 3-31: Addition of a shunt capacitor.
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ADDITION OF A SHUNT INDUCTOR

Fig. 3-32 shows the effect of the parallel addition of a negative 
susceptance –j1.5 (inductance) to an admittance y 0.7 j0.8+= . 
The resulting admittance is y 0.7 j–= . This operation corre-
sponds graphically to moving around a constant conductance cir-
cle counter-clockwise.

Fig 3-32: Addition of a shunt inductor.
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SUMMARY OF SMITH CHART MANIPULATION

Fig. 3-32 presents a summary of the effect of the addition of 
components on a Smith Chart.

Fig 3-33: Summary of the manipulation of components on the 
Smith Chart.
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EXAMPLE 1 (1/2)

Design a two-element circuit to impedance-match a source 
impedance ZS 25 j15–=  to a load impedance ZL 100 j25–=
for a frequency of 60 MHz. The transfer function should be of 
type low-pass.
The impedance that must be seen by the source is its complex 
conjugate, ZS∗ 25 j15+= . Thus, we must transform the load 
impedance to an impedance ZS∗ . We choose to normalize the 
impedance to R0 50Ω= , so: zS∗ 0.5 j0.3+=  and
zL 2 j0.5–= . These two normalized impedances are repre-
sented respectively at point A (load) and at point C (source). We 
must link these two points by introducing series and parallel ele-
ments. The constraint of needing a low-pass characteristic, 
forces us to have a series inductor combined with a parallel 
capacitor. The only way to connect point A to point C while satis-
fying this demand is represented in Fig. 3-34. The arc AB corre-
sponds to a shunt capacitor with normalized susceptance 
+b 0.73= . The arc BC corresponds to a series inductor with 
normalized reactance +x 1.2= . We find the values of the com-
ponents by denormalizing according to the following equations:

series:

C 1
ωxR0
-------------=

L
xR0
ω

---------=

parallel:

C b
ωR0
----------=

L
R0
ωb-------=

(3.18)

from which:

C b
ωR0
---------- 0.73

2π60 6×10 50×
------------------------------------- 38.7pF= = =

L
xR0
ω

--------- 1.2 50×

2π60 6×10
------------------------- 159nH= = =
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EXAMPLE 1 (2/2)

Fig 3-34: Example of two-element impedance matching.
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CONSTANT-Q ARCS

We have seen that when matching networks of more than two 
elements, it is possible to choose the quality factor of the cir-
cuit. Fig. 3-35 represents the set of points with quality factor 5. 
These are situated on two arcs. The higher the quality factor, 
the more the arcs approach the circumference of the exterior 
circle representing an infinite quality factor.

Fig 3-35: Constant-Q arcs.

Q 5=

Q 5=
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THREE-ELEMENT NETWORKS

The design procedure using the Smith Chart for three-element 
matching circuits is as follows: 
1)Draw the arcs corresponding to the specified quality factor;
2)Plot the normalized load impedance and the normalized source 

impedance;
3)Determine which of the terminating resistors will set the qual-

ity factor of the circuit: the smaller for Τ networks, and the 
larger for Π networks;

4)For Τ networks: 
RS RL> : from the load, move along a constant resistance circle 
to the intersection with the constant-Q arc. This arc will 
determine the value of the first element. Reach the point zs∗
by first adding a shunt element and then a series element; 
RS RL< : find the intersection I of the constant-R circle of the 
source, with the constant-Q arc. Reach the point I from the 
load by using two elements: first a series element followed by 
a shunt element. Reach the point zs∗  by moving around the con-
stant-R circle with the help of another series element.

5)For Π networks: 
RS RL> : find the intersection I of the constant conductance 
circle of the source with the constant-Q arc. Leave from the 
load towards the point I first with a shunt element followed by 
a series element. Go toward the point zs∗  on the constant-G 
circle by using another shunt element; 
RS RL< : leave from the load on the constant-G circle until 
reaching the intersection with the constant-Q arc. The length 
of this arc determines the value of the first shunt element. Go 
to the point zs∗  by adding first a series element, followed by a 
shunt element.
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EXAMPLE 2 (1/2)

We would like to design a Τ network to impedance-match a 
source ZS 15 j15+( )Ω=  with a load impedance ZL 225Ω=
for a frequency of 30 MHz and a quality factor of 5.
We normalize with R0 75Ω=  and find zS∗ 0.2 j0.2–=  and
zL 3= . Since we want a Τ network, in this case it is the source 
termination that determines the quality factor. Following the 
procedure for RS RL< , it is first necessary to determine the 
intersection I of the constant-R circle that passes through zS∗
and the constant-Q arc. Then we must leave from the load to go 
to this point I, first with a series inductor L3 with reactance 
x3 2.5=  and a shunt capacitor C2 with susceptance b2 1.15= . 
Then we move around the constant-R circle with a series induc-
tor L1 with reactance x1 0.8= . We calculate the values of the 
elements according to:

L3
x3R0

ω
----------- 2.5 75×

2π30 6×10
------------------------- 995nH= = =

C2
b2

ωR0
---------- 1.15

2π30 6×10 75×
------------------------------------- 81pF= = =

L1
x1R0

ω
----------- 0.8 75×

2π30 6×10
------------------------- 318nH= = =

(3.19)

The resulting circuit and the design process are shown in Fig. 3-
36.
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EXAMPLE 2 (2/2)

Fig 3-36: Example of three-element impedance matching.
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	Impedance matching
	Definition of matching (1/2)
	The active power provided by a source represented by its Thevenin equivalent, of internal impedance with a load impedance is given by:
	(3.1)
	Fig 3-1: Source connected to a load.
	For a given source impedance, the power dissipated in RL is maximum when:

	(3.2)
	and thus when: (3.3)
	The power transfer from a source to a load is therefore maximum when the load impedance is equal to the complex conjugate of the source impedance. This situation corresponds to matching.



	Definition of matching (2/2)
	When the load impedance is matched to the source impedance, the load reactance has the opposite sign from the source reactance, and thus they mutually compensate each other. The resulting circuit corresponds to a series connection of the source and l...
	Fig 3-2: Matching the load.
	Impedance matching is thus only strictly realized at a single frequency, which is the resonant frequency of the series resonant circuit. The matching worsens as the frequency gets farther from the resonant frequency, which can cause problems for circ...


	Principle of impedance matching
	Impedance matching consists of synthesizing a non-dissipating circuit (thus containing only inductors and capacitors) inserted between the source and the load, such that the impedance as seen from the source is equal to the complex conjugate of the s...
	Fig 3-3: Principle of impedance matching.
	All of the following methods are based on the equivalence between the series and parallel circuits illustrated in Fig. 3-4. The unloaded Q is the quality factor of the impedance-matched circuit associated either with the source or the load resistance...

	Fig 3-4: Series / parallel equivalence.

	L networks (1/4)
	When the source and load impedances are purely resistive and , it is necessary to lower the impedance seen from the source by placing a reactance (inductor or capacitor) in parallel with the load. One must then compensate the reactance of the shunt e...
	Fig 3-5: Example of an L circuit, impedance step-down.
	This parallel circuit can be transformed to an equivalent series circuit in which the series resistance will be equal to the source resistance, in this case 50 W. The two have the same quality factor:

	(3.4)
	from which we calculate the reactance of the inductor and the capacitor:
	and thus:


	l networks (2/4)
	The amplitude of the impedance of the circuit in Fig. 3-5 is represented in Fig. 3-6. We note that the reactance of Zin cancels out at the resonant frequency for which the input impedance is equal to 50 W. Notice that the circuit in Fig. 3-5 performs...
	Fig 3-6: Input impedance of the circuit in Fig. 3-5.
	Since the two reactances must be of opposite signs, one of the components will be an inductor and the other a capacitor. There are therefore only two L networks which lower the impedance as seen from the source. They are shown in Fig. 3-7.

	Fig 3-7: L networks, impedance step-down ().

	l networks (3/4)
	When the source and load impedances are purely resistive and , it is necessary to increase the impedance seen from the source by placing a reactance (inductor or capacitor) in series with the load. One must then compensate the reactance of the series...
	Fig 3-8: Example of L network, impedance step-up.
	The series circuit can be transformed to its parallel equivalent according to:

	(3.5)
	One can thus calculate the reactance of the inductor and the capacitor:
	and the values of the components for the desired frequency:


	l networks (4/4)
	The amplitude of the impedance of the circuit in Fig. 3-8 is represented in Fig. 3-6. We note once again that the reactance of Zin cancels out at the resonant frequency for which the input impedance is equal to 3000 W. The circuit in Fig. 3-8 perform...
	Fig 3-9: Input impedance for the circuit in Fig. 3-8.
	There are two L networks which allow us to increase the impedance as seen from the source. They are shown in Fig. 3-10.

	Fig 3-10: L networks, impedance step-up ().

	complex source and load Impedances (1/4)
	In the preceding examples, we supposed that the source and load impedances were real. In reality, they are rarely real. For example, the input and output impedances of a bipolar transistor are always complex. There are two methods for handling the re...
	a) absorption: the reactances of the source and load can be taken into account in the impedance matching network by placing the components such that the functional capacitors of the network are in parallel with the parasitic capacitances and the func...
	b) resonance: cancel out the effect of the reactances of the source and load by placing a reactance of the opposite sign in parallel or in series.
	Note that absorption is only possible when the value of the parasitic element is smaller than that of the functional element from which it must be subtracted. These two techniques can naturally be combined.
	By way of example we synthesize an impedance matching network using the absorption method for the circuit in Fig. 3-11.

	Fig 3-11: Complex source and load impedances.
	At first we ignore the source and load reactances. The load resistance being larger than the source resistance, we choose the L network of Fig. 3-7 a).


	complex source and load Impedances (2/4)
	The quality factor is given by:
	from which we get:
	We thus obtain the diagram shown in Fig. 3-12 a). By then subtracting the value of the 477nH series source inductance and the value of the 4.8 pF parallel load capacitance, we obtain the diagram in Fig. 3-12 b).
	Fig 3-12: Illustration of the absorption method.

	complex source and load Impedances (3/4)
	Another example, illustrating the load resonance technique, is given in Fig. 3-13 a). We want to synthesize a high-pass impedance-matching circuit. The fact that the load resistance is larger than the source resistance means that we must use the circ...
	We therefore get the circuit of Fig. 3-13 b) from which we can calculate the elements of the L network:
	We thus obtain the circuit in Fig. 3-13 c) which can be simplified further by calculating the equivalent inductance for the two parallel inductances connected to the load. Finally, we obtain the circuit in Fig. 3-13 d).

	complex source and load Impedances (4/4)
	Fig 3-13: Illustration of the resonance technique.

	three-element matching networks
	The disavantage of L networks comes from the fact that when the source and load resistances are specified, the quality factor and therefore the selectivity of the impedance-matching network are likewise specified (cf Eqn. 3.4 and 3.5). There are then...
	There are two types of three-element matching networks (cf Fig. 3-14):
	1) P networks;
	2) T networks;
	Fig 3-14: 3-element matching networks.

	P networks
	One can describe the P network as the connection of two L networks with a virtual resistance as shown in the diagram in Fig. 3- 15. This virtual resistance is just used to dimension the elements of the L networks. The reactances Xs1 and Xp1 as well a...
	Fig 3-15: P network represented as two L networks.
	The virtual resistance Rvirt represents the resistance seen from the center point with , from which we get . In addition, the resistance seen from the source must be equal to RS , imposing with and therefore . We remark that for the quality factors Q...

	(3.6)
	where Rmax represents the larger of the resistances RS or RL.


	P network example (1/2)
	As an example, we will match a load resistance of 50 W to a source resistance of 3000 W by using a P network, conserving a quality factor of 10 (cf Fig. 3-16).
	Fig 3-16: Example of designing a P network.
	The frequency is equal to 1 MHz. Rvirt is calculated from Eqn. 3.6 with Rmax = RS = 3000 W:
	The reactances of the first section are thus given by:
	The quality factor of the second L network section is then set by the resistances Rvirt and RL:
	The resistance RL must now be matched to the virtual resistance. Since it appears in a parallel branch, we have:
	As a result of choosing inductors for the series branches, the shunt branches will therefore be capacitors:


	P network example (2/2)
	We finally obtain the circuit shown in Fig. 3-17 a), for which the magnitude of the input impedance is shown as a function of the frequency in Fig. 3-17 b). We notice that the imposed quality factor corresponds well to the bandwidth at -3 dB and that...
	Fig 3-17: Example of the design of a P network.

	T networks
	The T network can be described as two back-to-back L networks of which the shunt branches are in parallel, as shown in Fig. 3-18. The difference with respect to the P network is that in the T network, the virtual resistance is larger than both the so...
	Fig 3-18: The T network represented as two L networks.
	The quality factor of the T network is determined by the L network section with the higher quality factor. By definition, the section with the higher quality factor is at the side with the smaller terminating resistor. Q is determined by the formula:

	(3.7)
	where Rmin is the smaller terminating resistor.


	T network example
	As an example, we would like to design a T network to match a source resistance of 10 W to a load resistance of 50 W with a quality factor of 10. We would like to use a minimum number of inductors, and we want the resulting filter to be of type passband
	The virtual resistance is calculated from Eqn. 3.7:
	The section with the higher quality factor is on the source side. The reactances of the corresponding L network section are:
	The quality factor of the L network section on the load side is determined by the resistances Rvirt and RL:
	One possible design in which there is only one inductor and the filtering characteristic is of type passband is shown in Fig. 3-19.
	Fig 3-19: Example of T network.

	wideband impedance matching (1/2)
	Up until now we have seen L networks for which the quality factor was determined by the source and load resistances, and P and T networks which allow us to choose a quality factor independently of the source and load, as long as it is higher than tha...
	Fig 3-20: Low quality factor (wideband) matching network.

	wideband impedance matching (2/2)
	The minimum quality factor and therefore the maximum bandwidth are obtained when:
	(3.8)
	The quality factor is thus defined by:

	(3.9)
	where Rvirt is the virtual resistance and Rmin and Rmax are, respectively, the smaller and larger terminating resistances.


	matching with an autotransformer
	The impedance matching of two circuits can also be carried out by using an inductor with a central lead (or autotransformer) or a capacitive divider. These matching networks are useful when one wants to create, for example, a parallel resonant circui...
	Fig 3-21: Impedance matching by autotransformer.
	The equivalent resistance in parallel with the LC circuit is equal to the lo ad resistance RL multiplied by a factor :

	(3.10)

	impedance matching with a capacitive divider
	It is also possible to do impedance matching with a capacitive divider, as shown in Fig. 3-22.
	Fig 3-22: Impedance matching with a capacitive divider.
	The admittance Y appearing in parallel with the inductance L in the diagram in Fig. 3-22 a) has the value:

	(3.11)
	For frequencies , this admittance can be broken up into a parallel conductance

	(3.12)
	and a capacitance C equal to the series connection of C1 and C2. The resistance seen at the terminals of the circuit at the resonant frequency of the parallel LC is thus equal to the load resistance multiplied by a factor :

	(3.13)

	Smith charts
	The Smith Chart is probably one of the most useful graphical tools for the conception of HF circuits, and specifically for the synthesis of impedance matching networks. It was invented in the 1930’s by an engineer at Bell Labs named Phillip Smith. ...
	(3.14)
	where Z0 is the normalization impedance, usually 50 W. The Smith Chart lets us find the impedance z when we know the reflection coefficient G or vice versa.

	Fig 3-23: Transformation of the z plane to the G plane.
	By setting and , and knowing r and x, p and q must be determined from the following relationship:

	(3.15)

	smith chart Construction (1/2)
	Constant resistance circles
	By setting the real and imaginary parts of Eqn. 3.15 to be equal, we find the equations which describe the curves of constant r:
	(3.16)
	as well as those of constant x:

	(3.17)
	The curves for defined by Eqn. 3.16 are circles with radius of which the center is located on the real axis at the point . The two intersections with the real axis are located at and 1. For r varying from 0 to 10, we obtain the network of circles sho...

	Fig 3-24: Constant resistance circles


	smith chart Construction (2/2)
	Constant reactance circles
	The curves with defined by Eqn. 3.17 are also circles, with radius of which the center is located at coordinates . For x varying from 0.1 to 10, we get the network of circles shown in Fig. 3-25. Each point of one of these circles has the same (normal...
	Fig 3-25: Constant reactance circles.


	impedance charts
	The superposition of constant resistance and constant reactance circles gives the complete Smith Chart of impedances, as shown in Fig. 3-26. The exterior circle corresponds to zero resistance or a purely imaginary impedance. The upper part correspond...
	Fig 3-26: Impedance chart.

	Addition of a series capacitor
	Fig. 3-27 represents the effect of the series addition of a normalized negative reactance –j1.0 (corresponding to a capacitance) with a normalized impedance . The resulting impedance is thus given by . The series addition of this capacitor correspo...
	Fig 3-27: Addition of a series capacitor.

	Addition of a series inductor
	Fig. 3-28 represents the effect of the series addition of a positive reactance j1.8 (corresponding to an inductance) with a normalized impedance . The resulting impedance is equal to . The series addition of this inductor corresponds graphically to m...
	Fig 3-28: Addition of a series inductor.

	Converting impedance to admittance
	The Smith Chart can be used to convert an impedance z to an admittance . Let’s look at , for example. The corresponding admittance is . The two corresponding points are shown in Fig. 3-29. Note that they are the same distance d from the origin, but...
	Fig 3-29: Conversion of impedance to admittance.

	combined impedance and admittance chart
	By rotating the impedance chart by 180°, we obtain the admittance chart. Fig. 3-30 shows the superposition of these two charts. One single point now simultaneously corresponds to an impedance and its admittance, of which the values can be read from ...
	Fig 3-30: The complete Smith chart.

	Addition of a shunt capacitor
	Fig. 3-31 shows the effect of the series addition of a positive susceptance +j0.8 (capacitance) to an admittance of , resulting in an admittance . From a graphical point of view, the parallel addition of a capacitor corresponds to moving around a con...
	Fig 3-31: Addition of a shunt capacitor.

	Addition of a shunt inductor
	Fig. 3-32 shows the effect of the parallel addition of a negative susceptance –j1.5 (inductance) to an admittance . The resulting admittance is . This operation corresponds graphically to moving around a constant conductance circle counter-clockwise.
	Fig 3-32: Addition of a shunt inductor.

	summary of smith chart manipulation
	Fig. 3-32 presents a summary of the effect of the addition of components on a Smith Chart.
	Fig 3-33: Summary of the manipulation of components on the Smith Chart.

	Example 1 (1/2)
	Design a two-element circuit to impedance-match a source impedance to a load impedance for a frequency of 60 MHz. The transfer function should be of type low-pass.
	The impedance that must be seen by the source is its complex conjugate, . Thus, we must transform the load impedance to an impedance . We choose to normalize the impedance to , so: and . These two normalized impedances are represented respectively at...
	(3.18)
	from which:


	Example 1 (2/2)
	Fig 3-34: Example of two-element impedance matching.

	constant-q arcs
	We have seen that when matching networks of more than two elements, it is possible to choose the quality factor of the circuit. Fig. 3-35 represents the set of points with quality factor 5. These are situated on two arcs. The higher the quality facto...
	Fig 3-35: Constant-Q arcs.

	three-element networks
	The design procedure using the Smith Chart for three-element matching circuits is as follows:
	1) Draw the arcs corresponding to the specified quality factor;
	2) Plot the normalized load impedance and the normalized source impedance;
	3) Determine which of the terminating resistors will set the quality factor of the circuit: the smaller for T networks, and the larger for P networks;
	4) For T networks: : from the load, move along a constant resistance circle to the intersection with the constant-Q arc. This arc will determine the value of the first element. Reach the point by first adding a shunt element and then a series element...
	5) For P networks: : find the intersection I of the constant conductance circle of the source with the constant-Q arc. Leave from the load towards the point I first with a shunt element followed by a series element. Go toward the point on the constan...

	Example 2 (1/2)
	We would like to design a T network to impedance-match a source with a load impedance for a frequency of 30 MHz and a quality factor of 5.
	We normalize with and find and . Since we want a T network, in this case it is the source termination that determines the quality factor. Following the procedure for , it is first necessary to determine the intersection I of the constant-R circle tha...
	(3.19)
	The resulting circuit and the design process are shown in Fig. 3- 36.


	Example 2 (2/2)
	Fig 3-36: Example of three-element impedance matching.


